ProNova VINN Excellence Centre
for Protein Technology

Project status reports
November 26th, 2012
Research Program Stage 3

1. Affinity Tools and Protein Engineering
 - Affibody
 - BioInvent
 - GE Healthcare
 - Genovis
 - Gyros
 - Mabtech
 - Olink
 - ThermoFisher Scientific (Phadia)

2. Array Technologies
 - Affibody
 - AstraZeneca
 - Atlas Antibodies
 - Gyros
 - Mabtech
 - SOBI
 - ThermoFisher Scientific (Phadia)

3. Microfluidics
 - Novozymes
 - ThermoFisher Scientific (Phadia)
Project resources and spendings (after 25% of project period)

Affinity Tools & Protein Engineering

1A. Development of an *E. coli* display system	320 kSEK
1B. Exploitation of immunoglobulin-binding domains for antibody labeling	640 kSEK
1C. Antibody labeling for preclinical *in vivo* imaging applications	640 kSEK
1D. Detection systems based on split-protein complementation	640 kSEK
Total: 1659 kSEK (28%)	**4480 kSEK (2 years)**

Array Technologies

2A. Antibody characterization and purification	640 kSEK
2B. Antigen microarrays and autoimmunity repertoires	640 kSEK
2C. Advancing antibody bead arrays for biomarker discovery	640 kSEK
2D. Immunosequencing (iSeq) for highly multiplex protein analysis	320 kSEK
Total: 164 kSEK (26%)	**4480 kSEK (2 years)**

Microfluidics

3A. Droplet microfluidics	480 kSEK
3B. Lateral flow microarray assays	480 kSEK
Total: 204 kSEK (11%)	**1920 kSEK (2 years)**

Report period: April 2012 – September 2012

Total: 5440 kSEK/year
Program Area 1: Affinity Tools and Protein Engineering

Program Area Director: John Löfblom

1A. Development of an *E. coli* display system
Personnel (KTH): John Löfblom (PI), Stefan Ståhl (co-PI), Filippa Fleetwood (PhD student), Ken Andersson (PhD student)
Industrial partner: Affibody AB

1B. Exploitation of immunoglobulin-binding domains for antibody labeling
Personnel (KTH): Sophia Hober (PI), Sara Kanje (PhD student)
Industrial partners: BioInvent International AB, Gyros AB, Mabtech AB and Olink AB

1C. Antibody labeling for preclinical *in vivo* imaging applications
Personnel (KTH): Amelie Eriksson Karlström (PI), Kristina Westerlund (PostDoc), Anna Perols (PhD student)
Industrial partners: BioInvent International AB and Genovis AB

1D. Detection systems based on split-protein complementation
Personnel (KTH): Per-Åke Nygren (PI), Amrita Singh-Blom (PostDoc), Feifan Yu (PhD student)
Industrial partners: GE Healthcare Bio-Sciences AB and ThermoFisher Scientific (Phadia AB)
1A. Development of an *E. coli* display system

Project aims: The subproject is focused on development of a new *E. coli*-based protein/peptide library display system for epitope mapping and combinatorial protein engineering.

Current status:

WP1: Construction of an expression cassette for library applications.
- Putative OmpT-sites mutated in model affinity protein (Affibody molecule) and normalization tag (ABP)
- Mutated Affibody molecule and ABP displayed in a functional manner on the outer membrane (verified by FACS)
- New unique OmpT-site (+His-tag) introduced (sequence ver. ongoing)

WP2: Evaluation of different promoter systems and strains.
- Three different inducible promoters for expression in *E. coli* have been obtained

Dissemination of results/IPR considerations:
- No patentable results identified yet.
1B. Exploitation of immunoglobulin-binding domains for antibody labeling

Project aims: To create a Fab binding protein with crosslinking abilities for antibody labelling

Current status:

- New double mutants
 - K31A_K28A
 - K31W_K28A
 - Q32A_K28A
 - Q32W_K28A
 - K28A_D40A
 - K31A_D40A
 - Q32A_D40A
 - N35A_D40A
 - N35W_D40A -> N35W_D40T

- Ongoing:
 - Synthesis of double mutants with BPA at
 - T11
 - E19
 - G38
 - T11_E19
 - Biotin on L50

Dissemination of results/IPR considerations:

- Discussions regarding patentability ongoing
1C. Antibody labeling for preclinical *in vivo* imaging applications

Project aims: to explore the ProNova technology for site-specific labeling of antibodies, based on immunoglobulin-binding domains in combination with photoactivatable probes, for preclinical *in vivo* imaging by e.g. SPECT, PET, MRI or optical imaging.

Current status:

WP1: Optimization of antibody photoconjugation yield
- different benzophenone-labeled Z domain variants synthesized and tested
- Z32BPA shows high photocoupling efficiency to human IgG1

WP2: Labeling via functionalized nanoparticles
- PEG-coated superparamagnetic iron oxide nanoparticles (11 nm) from Genovis AB
- Z5BPA-thiol coupled to nanoparticle
- UV conjugation to antibodies

Stage 2 project: Development of conjugation chemistries for DNA labeling of antibodies
- DNA labeling of antibodies is performed via the ZSBPA domain conjugated to a peptide nucleic acid (PNA) tag
- Proof-of-concept: immuno-PCR

Dissemination of results/IPR considerations:
- No patentable results identified. The results of the optimized photoconjugation yield will be summarized in a short publication/letter. DNA labeling via PNA tag; manuscript in preparation.
1D. Detection systems based on split-protein complementation

Project aims: To investigate split-protein complementation principles for use in different detection systems in biotechnology.

Current status:
- No spontaneous complementation
- Complementation is depending on fused/linked affinity system

WP1: Homogenous detection system based on Ab-Z\textsubscript{MBP}-mCherry conjugates
- Different fusions between a Z photocoupling probe and subfragments of mCherry cloned and produced
- Photoconjugation of detection antibodies performed
- Target detection tests ongoing
- Linker lengths to be further varied

WP2: Monitoring of fusion protein cleavage via detection of split GFP reconstitution
- GFP 1-10 expression construct designed and received from DNA 2.0
- pGEX-6P-1 vector (GE’s GST system) has been genetically modified to contain the GFP 11 element (sequence to be verified)
- Gene for first model target protein T7 RNA polymerase (99 kDa) successfully PCR amplified from *E. coli* BL21 chromosome
- Cleavage/complementation tests to be performed (w/o target protein)

Dissemination of results/IPR considerations:
- No patentable results identified yet.
Program Area 2: Array Technologies

Program Area Director: Peter Nilsson

2A. Antibody characterization and purification
Personnel (KTH): Johan Rockberg (PI), Mathias Uhlén (co-PI), Anna-Luisa Volk (PhD student)
Industrial partners: Affibody AB, Atlas Antibodies AB, Gyros AB and SOBI AB

2B. Antigen microarrays and autoimmunity repertoires
Personnel (KTH): Peter Nilsson (PI), Julie Bachmann (PostDoc), Ronald Sjöberg (PhD student/Res. Engineer), Anna Häggmark (PhD student), Maja Neiman (PhD student)
Industrial partners: Affibody AB and ThermoFisher Scientific (Phadia AB)

2C. Advancing antibody bead arrays for biomarker discovery
Personnel (KTH): Jochen Schwenk (PI), Mun-Gwan Hong (PostDoc), Sanna Byström (PhD student), Elin Birgersson (Res. Engineer)
Industrial partners: Affibody AB, AstraZeneca AB, Atlas Antibodies AB, Gyros AB and Mabtech AB.

2D. Immunosequencing (iSeq) for highly multiplex protein analysis
Personnel (KTH): Afshin Ahmadian (PI), Mahya Dezfooli (PhD student)
Industrial partner: Atlas Antibodies AB
2A. Antibody characterization and purification

Project aims: The project is split into two work packages: A) Epitope mapping of structural epitopes and B) Epitope mapping using high density planar arrays for generation of antibody-pairs

Current status:

![Data Set 4: Woll_D02](image1)

WP1: Epitope mapping of structural epitopes
- Three target antigens decided (EGFR, HER2 and SOBI target)
- Domain and multidomain fragments designed (around 25-30)
- All fragments amplified, cloned and sequenced
- First structures just tested in *S.carnosus* (picture) and the 4 domains of HER2 express successfully
- Next to test binding of affibody molecules and reference reagents

![WP2: Epitope mapping using high-density peptide planar arrays for generation of antibody-pairs](image2)

- Test using smaller set of proteins using old array trying reaction conditions for array mappings
- Initial choice of antigens by industry partners
- Next order designed arrays for analysis of chosen proteins

Dissemination of results/IPR considerations:
- No patentable results identified yet.
2B. Antigen microarrays and autoimmunity repertoires

Project aims: Explore the potential of antigen microarrays as a tool to generate autoimmunity signatures in body fluids and new knowledge about the autoimmunity repertoires in various types of diseases as well as in non-disease individuals.

Current status:

WP1: Establish a standardized analytical framework.
- Automated experimental procedures established for sample handling on planar microarrays
- Procedure for bead-based verification phase established
- An advance LIMS and data warehouse has been partly developed for data analysis and visualization

WP2: Establish procedures for profiling of other body fluids.
- Both CSF, cerebrospinal fluid, and BAL, bronchoalveolar lavage are now being explored for autoimmunity signatures within the areas of multiple sclerosis and sarcoidosis

WP3: Develop a citrullination assay.
- Initial citrullination experiments have been performed, without any success

WP4: Explore multiplex profiling and affibody molecules as detection reagents
- This will be initiated 2013

Dissemination of results/IPR considerations:
- Results from autoimmunity profiling reveal massive heterogeneity among individuals
2C. Advancing antibody bead arrays for biomarker discovery

Project aims: Improve translation versatility and performance of bead-based protein profiling

Current status:

WP1 – Advancing throughput for screening
- 384-plex and 384-well assays established
- Co-profiling efforts ongoing, manuscript on CSF analysis to be submitted
- Segmented arrays in development

WP2 - Advancing assays for screening
- First test on emulsions performed, more to be done
- Implementation of Affibody molecules is ongoing

WP3 - Verification assays for discoveries
- First protocol for screening of antibody pairs in use
- Epitope mapped monoclonal antibodies to Fibulin-1 in preparation

WP4 – Verifying technologies for new targets
- Platform integration to be initiated

WP 5 – Biomarker discovery and verification
- Three DILI studies in data analysis (Acetaminophen, Momenta, Ethiopia)
- COPD study to be initiated

Dissemination of results/IPR considerations:
- Protein profiling using 10,000 antibodies in cancer and cardiovascular diseases
2D. Immunosequencing (iSeq) for highly multiplex protein analysis

Project aims: The main focus of the project is on a novel principle for simultaneous detection and quantification of protein abundances in complex samples, where a combination between immunorecognition (DNA-labeled antibodies) and massively parallel DNA sequencing is applied. The challenges to label antibodies with DNA, which is of general interest for the growing field of DNA-assisted proteomics, are addressed.

Current status:

WP1: Immunosequencing enabled by DNA-antibody carrying magnetic particles.
- An automated protocol is established for solid-phase conjugation
- Five antibodies, coupled to barcode probes on magnetic particles, were tested on PrEST arrays in a 3+2 manner (3 positives and 2 negative controls)
- Resulting amplicons of the barcoded probes were massively parallel sequenced.
- The 3 positive controls gave between 18000-49000 reads while the negative controls resulted in only 300-500 reads

WP2: Conjugation in droplets.
- This project is not initiated yet

WP3: Antibody labeling.
- A fully automated protocol for labeling scarce amounts of antibody is established
- Successful labeling with different fluorophores and biotin is done
- Stability of the labeled antibodies is under investigation

Dissemination of results/IPR considerations:
- A manuscript describing fully automated biotinylation and fluorescence labeling of antibodies is prepared. A second manuscript describing iSeq is under preparation.
Program Area 3: Microfluidics

Program Area Director: Helene Andersson Svahn

3A. Droplet microfluidics
Personnel (KTH): Helene Andersson Svahn (PI), Håkan Jönsson (Co-PI/PostDoc), Staffan Sjöström (PhD student), Yunpeng Bai (PostDoc)
Industrial partner: Novozymes A/S

3B. Lateral flow microarray assays
Personnel (KTH): Helene Andersson Svahn (PI), Jesper Gantelius (Co-PI/PostDoc), Thiru Raja Chinivasamy (PostDoc)
Industrial partner: ThermoFisher Scientific (Phadia AB)
3A. Droplet microfluidics

Project aims: To select functionally improved enzyme variants from a bacterial library by droplet microfluidics based high throughput screening

Current status:

WP1: Enzymatic activity based droplet sorting of amylase library
- Picoinjection and droplet sorting functional enabling workflow for screening at non-native conditions
- High throughput droplet based sorting of mock library shows high enrichment of amylase producing bacterial strain

WP2: Controlled retrieval/output of single clones and downstream droplet PCR
- Droplets interfaced with FACS through solidification for controlled output of encapsulated clones
- Emulsion intact following standard thermocycling (improved oil-surfactant formulation)

Dissemination of results/IPR considerations:
- Discussions ongoing with partner company
3A. Droplet microfluidics

Project aims: To select functionally improved enzyme variants from a bacterial library by droplet microfluidics based high throughput screening

Current status:

Injection of sub-picoliters in 1000 droplets per second

Analysis and selection of 2000 droplets per second
3B. Lateral flow microarray assays

Project aims: Improve sensitivity and detection options for LFM

Current status:

- In-house made dual-labelled GNP (anti-IgG, anti-IgE, Neutravidin and enzymes HRP, ALP)
- Employed with LFM in Rheumatoid Arthritis (RA), allergy and antibody array serum analysis

Next step: novel NPs

- In-house made dual-labelled GNP (an@-IgG, an@-IgE, Neutravidin and enzymes HRP, ALP)
- Employed with LFM in Rheumatoid Arthritis (RA), allergy and antibody array serum analysis

Dissemination of results/IPR considerations:

- A manuscript showing LFM in RA-analysis is planned to be submitted this year
- There could be IPR considerations for the method and novel GNPs.